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Abstract

This paper investigates the impacts of COVID-19 safer-at-home polices on

collisions and pollution. We find that statewide safer-at-home policies lead to

a 20% reduction in vehicular collisions and that the effect is entirely driven by

less severe collisions. For pollution, we find particulate matter concentration

levels approximately 1.5µg/m3 lower during the period of a safer-at-home or-

der, representing a 25% reduction. We document a similar reduction in air

pollution following the implementation of similar policies in Europe. We cal-

culate that as of the end of June 2020, the benefits from avoided car collisions

in the U.S. were approximately $16 billion while the benefits from reduced

air pollution could be as high as $13 billion.
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The emergence of COVID-19 (formally termed SARS-CoV-2 by the International

Committee on Taxonomy of Viruses) has fundamentally changed human behavior.

Characterized as a pandemic by the World Health Organization on March 11, 2020,

the global scientific community is actively researching the virus and its impact. As

of December 31, 2020, the United States has seen over 341 thousand deaths and

over 19 million confirmed cases. COVID-19 has led most state governors to impose

safer-at-home orders. We consider safer-at-home orders to be a blanket term that

captures other efforts introduced simultaneously (or nearly so) whose goal was the

suspension of economic activity and public interaction in an effort to “flatten the

curve”.1 To date, the focus of the debate over safer-at-home orders has been on

their efficacy of transmission suppression and the implicit trade-off between lives

saved and reduced economic activity. Safer-at-home orders have resulted in serious

negative impacts on Americans in several dimensions: studies have shown large

impacts on the labor market, mental health, and domestic violence incidents, for

instance (e.g., Adams-Prassl et al. (2020); Beland et al. (2020); Brodeur et al.

(2021); Leslie and Wilson (2020)).

In this paper, we study other potential positive externalities of safer-at-home or-

ders; a decrease in air pollution and automobile collisions.2 We rely on a difference-

in-differences framework for identification. The setting is attractive for at least two

reasons. First, not all states (nor all counties) implemented safer-at-home orders,

and there is significant variation in implementation timing for those who do. Sec-

ond, our identification strategy allows us to address issues of reverse causality and

omitted variables bias by comparing states (or counties) that implemented safer-

at-home orders at different points in time. Our identification assumption is that,

conditional on COVID-19 incidence and other policies implemented (e.g., statewide

face masks mandates), the difference in pollution (or automobile collisions) between

areas with and without safer-at-home orders would be constant over time.

We first investigate the impact of safer-at-home orders on pollution. We find

that state safer-at-home policies decreased air pollution (specifically PM2.5) by

almost 25%, with larger effects for urban counties. This large effect size suggests

that these policies reduce emissions by almost one half of a within-county standard

deviation. Our estimates also suggest the issuance of a state order reduces the

number of county-days with an acceptable PM2.5 level by around 10 percentage

1See Hsiang et al. (2020) and Sanga and McCrary (2020) for similar treatment of safer-at-home
orders and lockdowns.

2Researchers have also begun investigating the direct effect of air pollution on COVID-19.
For example, higher levels of contemporaneous air pollution were associated with increased trans-
mission and mortality in the Chinese context by Zhang et al. (2020). This correlation is also
investigated for Italy, Spain, France, Germany, U.K. and U.S. in Pansini and Fornacca (2020). If
this result were to hold in our context, the benefits of safer-at-home orders reducing air pollution
may also include direct reductions in COVID-19 mortality and transmission.
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points (nearly eliminating ‘polluted’ days). Further, we find that the decrease in

air pollution persists for weeks after the order is lifted.

We check whether our results hold in a different setting by studying the impact

of countrywide ‘lockdowns’ policies in Europe. More specifically, we build a data

set of pseudo ‘counties’ for France, Germany, Italy, Spain, and the United Kingdom,

and document a (temporary) decrease in air pollution following the implementation

of lockdowns.

In addition, we estimate if there are car collision externalities stemming from the

safer-at-home orders. We use daily-level traffic collision data for all counties, orig-

inally sourced through two real-time maps service API’s which draw from sources

such as law enforcement and transportation departments. We identify a large reduc-

tion - about 20% - in traffic collisions after a state order is issued. We also examine

their severity using a four-point scale index based on traffic flow/disruption. Fol-

lowing an order, we find a large and significant decrease in the most common types

of collisions, with an increase in the minority of the most serious. Using social

mobility data, we provide evidence that individuals shift their travel away from tra-

ditionally congested periods which helps explain the pattern of overall reductions

but increases in collision severity.

We then explore the heterogeneous effects of safer-at-home policies on pollution

and collisions across county characteristics. We find that the decline in pollution

and collisions from safer-at-home orders is larger in urban counties. Our results

also indicate that counties in states with a larger share of occupations that can be

done remotely experience a larger reduction in pollution and collisions from these

policies.

Lastly, we provide some back-of-the-envelope calculations of the estimated bene-

fits from reduced pollution and collisions from safer-at-home orders. Using previous

estimates of willingness to pay for pollution reduction from the U.S. we find the

benefit from reduced pollution ranges from $154 million to $13 billion as of the

end of June 2020. Using estimates of the societal cost of car collisions from the

National Highway Traffic Safety Administration gives approximately $16 billion in

costs avoided as a result of safer-at-home orders as of June 2020.

We contribute to a growing literature informing the ongoing debate about safer-

at-home orders (see Brodeur, Gray, Islam and Bhuiyan (2020) for a literature re-

view). Previous studies have documented the positive impact of lockdowns on

(preventing) COVID-19 incidence, but also their potential negative effects on the

economy (e.g., Kong and Prinz (2020)), domestic violence (e.g., Leslie and Wilson

(2020)), child maltreatment (e.g., Bullinger et al. (2020)) and mental health (e.g.,

Adams-Prassl et al. (2020)) among other socioeconomic dimensions. We contribute

to this literature by pointing out two unintended benefits of lockdowns: decreased
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car crashes and reduced air pollution.

The most relevant papers to ours are possibly He et al. (2020) and Dang and

Trinh (Forthcoming). He et al. (2020) provide evidence that lockdowns in China

decreased PM2.5 by approximately 25%. Dang and Trinh (Forthcoming) provide

cross-national evidence for 164 countries on the impact of COVID-19 lockdowns on

global concentration of NO2 and PM2.5. They find that lockdowns decreased NO2

and PM2.5 levels by about 5 percent. Other relevant work includes Cicala et al.

(2020), Graf et al. (Forthcoming) and Le Quéré et al. (2020). Cicala et al. (2020)

provide evidence that electricity consumption fell in the U.S. during the pandemic.3

Graf et al. (Forthcoming) investigate how lockdowns can affect electricity market

performance using Italian data. Le Quéré et al. (2020) study the effects of gov-

ernment policies on country-level energy demand finding CO2 emissions (estimated

directly from confinement data) decreased by 17% compared to previous year lev-

els. Our paper focuses on the immediate positive externalities from a reduction in

road congestion and ambient particulate matter, using the available local and real

time data necessary to understand how local and state government policies affect

behavior.

The rest of the paper is organized as follows. Section 1 details the data, while

Section 2 describes our identification strategy. We discuss the impacts of safer-

at-home policies on pollution in Section 3. Section 4 investigates the effects of

safer-at-home policies on collisions. In Section 5, we investigate the relationship

between mobility and collision during safer-at-home orders. Section 6 provides our

back of the envelope calculations of the positive externalities these policies. Section

7 concludes.

1 Data

In this section, we describe our data. We first provide information on COVID-

19 cases and fatalities, and how they vary over time and across states. We then

describe data sources for safer-at-home orders and other policies. Last, we describe

our pollution and collision data.

1.1 COVID-19 Known Cases and Deaths

The first COVID-19 case in the U.S. was a man who had returned from Wuhan,

China to Washington State. The case was confirmed on January 20, 2020. Six

additional states confirmed cases later in January and February. The first case of

community transmission was confirmed in California, on February 26, 2020. As of

April 30, 2020 there were over 1 million confirmed cases due to COVID-19 in the

3Leach et al. (2020) document a reduction in the closely related Canadian context.
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United States. On the last day of 2020, the CDC reported 19,663,976 total cases

and 341,199 total deaths from COVID-19.

The COVID-19 known cases and deaths data comes from the Github repository

associated with the Johns Hopkins University interactive dashboard. The data

are available here: https://github.com/CSSEGISandData/COVID-19. Appendix

Figures A1 and A2 illustrate the geographic distribution of COVID-19 known cases

and deaths per 10,000 inhabitants, respectively.

1.2 Safer-at-Home Policy

Data for safer-at-home policies are from the New York Times.4 Figures 1 and 2

present maps indicating counties and states that implemented a safer-at-home policy

prior to April 30, 2020, respectively. Nearly all states had implemented such a policy

at this point in time, and the timing of implementation varies considerably. The first

state to implement a safer-at-home policy was California on March 19th, 2020. 18

more states followed California in the following week. In 2020, 43 states (including

the District of Columbia) had implemented some form of lockdown, representing

2,628 counties. Only California, North Carolina and Ohio had an active safer-

at-home order on the last day of 2020. 148 counties implemented a county-level

safer-at-home policy, of which 141 are located in states that would eventually have

a statewide policy. The median county implemented its safer-at-home policy one

week prior to the statewide policy.5

We also use data on the stringency of safer-at-home orders from the Oxford

COVID-19 Government Response Tracker (OxCGRT) implemented by the Uni-

versity of Oxford’s Blavatnik School of Government. We rely on an ordinal scale

measure of safer-at-home requirements, which takes the value of zero in the absence

of an order, one if governmental authorities recommended a state to stay home,

and two if staying-at-home was required with few exceptions such as daily exercise,

grocery shopping, and essential trips.

1.3 Other Policies

We also gather data on the following COVID-19 statewide policies: day care clo-

sures, freezes on eviction, mandatory face mask policies, and mandated quarantine

for individuals arriving from another state. Data on the implementation and dura-

tion of these policies come from Raifman et al. (2020). We provide more detailed

information about these policies in the Appendix 7.1.

4Data are available at https://www.nytimes.com/interactive/2020/us/

coronavirus-stay-at-home-order.html.
5Only seven counties (Brazos, Comal, Humboldt, Kings, Mendocino, Merced and Milam)

implemented an additional safer-at-home policy after a statewide policy.
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1.4 Social Distancing Data

We extract data on social distancing cell phone data from Unacast’s COVID-19

Toolkit. Unacast provides a Social Distancing Scoreboard at the county-level using

cell phone data which aims to empower organizations to evaluate the effectiveness

of social distancing initiatives (Brodeur, Grigoryeva and Kattan (2020)).

Using data pre-COVID-19 outbreak as a baseline, Unacast computes rate of

changes in average distance travelled, non-essential visitation, and human encoun-

ters. For our analysis, we rely on the first index. Unacast’s data is available starting

February 24th, 2020 and unavailable for many counties.

1.5 Air Pollution and Weather

1.5.1 Particulate Matter Concentrations Air pollution data is from in situ mon-

itors and provided by AirNow, a partnership between United States agencies.6 The

primary pollutant we use in our analysis is particulate matter with diameters less

than 2.5 micrometers - particles small enough that they are capable of being in-

haled and passing through the blood brain barrier. Emissions from combustion of

gasoline, oil, diesel fuel or wood produce much of the PM2.5 pollution found in

outdoor air. PM2.5 is associated with the greatest proportion of adverse health

effects related to air pollution in the United States.

The Environmental Protection Agency monitors PM2.5 levels to protect public

health and the environment, and has found average decreasing trends in the last two

decades. From 1990 to 2016, PM2.5 measures had fallen around 25%, a reduction

roughly equal to our estimated effect of the safer-at-home orders.

To aggregate PM2.5 levels from the monitor level to the county-level, we assign

each county’s population weighted centroid to the three nearest air quality monitor-

ing stations. Readings from each station are then averaged using inverse distance

weights where closer monitors carry proportionally more weight in the pollution

level. We also restrict our estimations to areas where the nearest station is within

50 kilometers (as accurate PM2.5 levels are necessarily local). In our sample, the

minimum distance to a pollution monitoring station is 114 meters, while the mean

and median are approximately 25km away.

In Appendix Figure A3, we present average weekly PM2.5 levels by county for

the week of March 1-7, 2020. This period, prior to any safer-at-home policies serves

as a visual representation of the geographic distribution of air pollution levels. In

Appendix Figure A4, we present the same PM2.5 measures during the final week of

6The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administra-
tion (NOAA), National Park Service, NASA, Centers for Disease Control, and tribal, state, and
local air quality agencies. The centralized system provides uniform quality control and reporting
consistency.
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April - after all eventually treated states had implemented a safer-at-home policy.

See also Appendix Figure A5 for the distribution of PM2.5 concentrations for all

county-days in our sample.

1.5.2 Other Air Pollution Measures While a derivative of PM2.5 levels, we also

provide results using the Air Quality Index (AQI). This unit-less measure ranges

from 0 to 500, with a score below 50 representing ‘not harmful’ levels of air pollution.

We also use aerosol optical depth (AOD) as an alternative and more geograph-

ically dispersed measure of air pollution. AOD estimates the amount of aerosol

(tiny solid and liquid particles released by cars, industries, fires, etc.) present in the

atmosphere and has been used as a proxy for surface air pollution (such as PM2.5).

Technically, AOD measures the “extinction of a ray of light as it passes through

the atmosphere” where extinction refers to diminishment either from absorption or

scattering. A greater measure of AOD indicates a higher estimate of surface air

pollution. Specifically, we use daily estimates of AOD at the 10km × 10km reso-

lution derived from the MODIS platform. We use pre-processed quality-controlled

estimates which account for both low-quality measurements and highly reflective

surfaces such as deserts.7 Appendix Figure A6 illustrates the distribution of AOD

for all county-days in our sample.

1.5.3 Temperature and Precipitation For temperature and precipitation, we use

the NOAA CPC Global Daily Temperature data set.8 This data set is typically used

for verification of other temperature and precipitation products, and is available

from 1979 to the present. This data set provides global coverage of temperature

and precipitation at the 0.5 degree× 0.5 degree spatial resolution. At the geographic

center of the contiguous United States (39.83 North and 98.58 West), this represents

a 55 km × 42 km grid. This data set is typically available in real time. The

underlying meteorological data comes from the Global Telecommunication System

daily reports. They are from 6,000 to 7,000 global stations, with 10% of those in

the United States. The station data is then gridded using the Shepard algorithm.

1.6 Collision Data

For our analysis on car crashes, we rely on collision data at the county-level from

49 states from January 1, 2020 to June 30, 2020 created by Moosavi et al. (2019).

7At the time of writing, the most recent data available for the AOD data was November 30,
2020, corresponding to day 335 of the year. AOD is not produced where clouds are definitively
present. A quick guide to Aerosol Optical Depth can also be found from NOAA-NASA.

8NOAA stands for the National Oceanic and Atmospheric Administration, an American sci-
entific agency within the United States Department of Commerce that focuses on the conditions
of the oceans, major waterways, and the atmosphere. They manage the United States operational
environmental satellites.
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The data set is built from continuously streaming traffic data from MapQuest and

Microsoft Bing map services and includes location, date, and severity of each crash.

These services stream traffic incidents captured from national and state departments

of transportation, law enforcement, traffic cameras, and traffic sensors. The authors

of the data set collected data at 90 second intervals from 6am to 11pm and 150

second intervals from 11pm to 6am. Our main variable of interest is the daily

number of collisions per county. The severity of an accident is coded as a number

ranging from 1 to 4 with 1 being the smallest impact on traffic and 4 being a

significant impact on traffic. Table 1 provides summary statistics for collisions. In

our sample, there are about 1.8 collisions per day per county.

2 Identification Strategy

Our hypothesis is that safer-at-home policies decreased PM2.5 concentrations and

collisions. To investigate this hypothesis, we estimate the following difference-in-

differences specification:

ycst = α + βStateSaferst + λCountySafercst + γc + δt +X ′cstω + εcst (1)

where ycst is, for instance, daily average PM2.5 measured in µg/m3 in county

c in state s and year t. We include a full set of county dummies γc to control for

time-invariant county characteristics and calendar date dummies δt (e.g., a separate

dummy for March 1, 2020, March 2, 2020, etc.). The time period spans January

1st, 2020 through the moment the statewide safer-at-home ended. We thus have an

unbalanced panel of counties. For the bulk of our analysis, the sample is restricted

to counties that eventually implement a county order or are under a statewide order.

The last day in our sample is June 30th, 2020, although the sample ends prior to

June 30th for the vast majority of counties. The state-level variable StateSaferst

equals one once the state has implemented the order and zero for the pre-policy

period.9 Our primary coefficient of interest is β. We also investigate the impact

of county orders. The county-level variable CountySaferct equals one once the

county has issued the order and zero for the pre-policy period. Another coefficient

of interest when included is thus λ. We cluster standard errors at the state-level,

corresponding to the primary policy and treatment level.

Note that the adoption of safer-at-home policies and timing of adoption may be

endogenously related to the severity of the virus. We thus include, Xcst, a vector

of county-day level covariates including known COVID-19 cases and deaths per

9Using the date of announcement instead of the date of implementation yields similar conclu-
sions. State orders are announced an average of three days prior to implementation.
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10,000 inhabitants. County population data comes from 2019 Census estimates.

We also control for county-day precipitation and average temperature. Further we

include controls for the following statewide policies: day care closures, freezes on

eviction, mandatory face mask policies, and mandated quarantine for individuals

arriving from another state. The inclusion of these other policy variables help us to

identify the impact of safer-at-home policies rather than the joint impact of multiple

government interventions.

Our identification assumption is that, conditional on the included control vari-

ables, the evolution of PM2.5 concentrations or collisions for counties with safer-at-

home policies would not have been different from those without the policies. This

amounts to an assumption of parallel trends in PM2.5 or collisions for treated and

untreated counties.10

Recent research on two-way fixed-effects (TWFE) estimators, which are usually

motivated as difference-in-differences with multiple time periods, has identified is-

sues that arise in the presence of heterogeneous treatment effects across groups or

time (Callaway and Sant’Anna (Forthcoming), De Chaisemartin and d’Haultfoeuille

(2020), Goodman-Bacon and Marcus (2020)). Using the twowayfeweights Stata

package detailed in De Chaisemartin and d’Haultfoeuille (2020), we document that

44% of the naive average treatments on the treated for pollution are assigned neg-

ative weights, indicating the need to reexamine our results using an alternative

estimator. We use the alternative estimators provided by Callaway and Sant’Anna

(Forthcoming), Callaway and Sant’Anna (2020) that are most appropriate for the

staggered adoption of safer-at-home policies in our sample. We discuss these alter-

native estimates in section 3.11

3 Safer-at-Home Orders and Pollution

In this section, we present the main results for air pollution using our difference-

in-differences strategy. We then then provide additional results for Europe and

heterogeneity analyses.

3.1 Main Results

In Table 2, we present our main result: a state’s implementation of a safer-at-home

order significantly lowers air pollution in its constituent counties.

10In a further analysis presented in the Appendix, we check the robustness of our results
using simulations constructed by applying synthetic control methods to match counties based on
pre-policy pollution levels. Our results are quantitatively similar, and the corresponding placebos-
in-place behave as expected.

11We do not provide staggered adoption estimates for collisions as these estimators are not
presently available for count data, however given that the share of negative weights is similar to
pollution we are optimistic that they would behave similarly to those of pollution.
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This table presents estimates of Equation 1 in which we compare counties in

states with and without a statewide safer-at-home policy.12 In all columns the

dependent variable is PM2.5 concentration. We use a total of 1,592 counties in our

estimation.

In the first column, we include only date and county fixed effects. The estimated

reduction in PM2.5 from a statewide safer-at-home order is statistically significant

at the 1% level and suggests that the introduction of a state order reduces PM2.5

levels by 1.7 µg/m3. With a mean of the dependent variable of 6.3 µg/m3 for the

same time period one year prior, this suggests the policy decreased air pollution by

more than 25%. For additional context, the within-county standard deviation of

PM2.5 during the same period one year prior was 2.8 µg/m3, suggesting the policy

reduces emissions by more than one half of a standard deviation.

In the second column, we include the county’s number of confirmed COVID-

19 cases per 10,000 inhabitants as a control. In the third column, we include the

county’s number of confirmed COVID-19 deaths per 10,000 inhabitants as a con-

trol. The inclusion of these two controls has almost no effect on the magnitude

and significance of our estimates. The estimate for COVID-19 cases is negative and

significant (statistically insignificant once we control for COVID deaths), suggest-

ing that increased cases reduces PM2.5 in a county. In contrast, the estimate for

COVID-19 deaths are not statistically significant.

In the fourth column, we control for four distinct statewide policies, while we

add local weather conditions - temperature and precipitation - in the fifth column.

Overall, the inclusion of other policies has little effect on the magnitude and sig-

nificance of our state order estimates on PM2.5. The inclusion of weather controls

makes the reductive effect of safer-at-home orders on air pollution smaller in mag-

nitude, but the estimate remains large and significant. We note that temperature

(precipitation) is positively (negatively) related to PM2.5 levels.

In Appendix Table A2, we test whether counties that implemented an order prior

to a statewide order are differently affected than counties that did not implement an

order. In columns 1 and 2, we reproduce our main result for all counties. Columns

3 and 4 restrict the sample to a subset of counties that issued their own orders prior

to their respective state. In columns 5 and 6, we restrict the sample to counties that

did not implement an order prior to the statewide order. Overall, we find that the

decrease in air pollution following the implementation of a statewide order is large

and significant for the two sets of counties. The estimate of the effect of a county

order is negative, but barely statistically insignificant, suggesting that conditional

on a state order being present, there is minimal additional reduction in PM2.5 from

12Our main results are robust to conducting the analysis at the state-level rather than at the
county-level. See Appendix Table A1 for the estimates.
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an additional county order being in effect.

In Appendix Table A3, we re-estimate the unweighted estimates from Table 2

and now weight by county population. In this manner, we place more emphasis

on relatively more populous (and concurrently polluted) counties. The inclusion of

this weighting increases the effect estimate by about 50% - the estimated reduction

grows from 1.7 to 2.5 µg/m3 - suggesting that the reduction in PM2.5 was larger

for more populous counties.

3.2 Robustness Checks

In Table 3, we conduct a similar but distinct analysis. The column specifications

and structure remains the same as in Table 2. While in Table 2 the dependent

variable was PM2.5 concentration, in Table 3 the dependent variable is an indicator

that takes a value of one if the PM2.5 level in that county, and on that day, is above

the National Ambient Air Quality Standard of 12 µg/m3.13 This reflects a change

in interpretation from linear decreases in pollution concentration to decreases in

exposure to environmental hazards. The interpretations of the coefficients change

as well. For example, in column 1 nearly 90% of days prior to a state order have an

acceptable level of ambient air pollution. Said differently, around one in ten county-

days exceed the tolerable level set by the EPA. When state orders are introduced,

almost all days for all counties have acceptably clean air (conditional on our control

variables). The incremental addition of controls does not perturb this estimate

significantly.14

Similarly, we rely on a remotely-sensed measure of air pollution in Appendix

Tables A6 and A7; aerosol optical depth (AOD). AOD is a measure of the diffusion

of light through the atmospheric column and a popular measure of air pollution

which has the distinct advantage of being measured from space. Our main results

(for example those presented in Table 3) are restricted to areas within 50 kilome-

ters of an air pollution monitoring site, reflecting the concern that air pollution

concentrations are inherently local. The locations of air quality monitoring sites are

also most likely non-random to urban centers and, more recently, concerns of their

strategic placement have also arisen. A uniformly measured and spatially available

measure of air pollution found in aerosol optical depth does not suffer the same

weaknesses, but does come with its own. For example, the relationship between

13The Environmental Protection Agency sets this standard as “Exposure to fine particle pol-
lution can cause premature death and harmful cardiovascular effects such as heart attacks and
strokes, and is linked to a variety of other significant health problems.” For example, Bowe et al.
(2019) show that among a cohort of U.S. veterans, nine causes of death were associated with
PM2.5 exposure above standards set by the Environmental Protection Agency.

14In Appendix Tables A4 and A5 we use instead Air Quality Index (AQI) and an indicator for
an acceptable Air Quality Index of below 50, respectively. Estimates are substantively the same.
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AOD and PM2.5 (and other pollutants) is often area-specific and can vary with

surface albedo, making aggregation necessary in our setting, difficult. Lower AOD

values are typically associated with lower levels of air pollution.

Appendix Table A6 uses aerosol optical depth as the dependent variable, but to

maintain a comparison with our main estimates in Table 2, we restrict the sample

to counties within 50 km of a monitoring station. In Appendix Table A7, we relax

this restriction. The estimates presented in Appendix Tables A6 and A7 suggest

that, during a lockdown, the measured within-county AOD is much lower (although

imprecisely estimated), corresponding to reductions in air pollution.15 The main

benefit of AOD over local PM2.5 concentrations is greater spatial availability. But

one drawback is the use of particularly coarse readings from the MODIS-TERRA

platform and the often relatively clean air in the United States (causing measures of

AOD to be often missing). Of course, there is also the possibility that air pollution

above the surface level is also being measured.

Appendix Table A8 provides the three aggregated alternative TWFE estima-

tors described in Callaway and Sant’Anna (Forthcoming). Column 1 recreates the

estimate from column 1 of Table 2. Column 2 provides the weighted (by group

size) average of all estimated county-day average treatment effects. In column 3, we

provide the average treatment effect over all lengths of exposure to safer-at-home

orders, while column 4 provides the average effect of implementing a safer-at-home

order for counties that were under an order in any period. All columns include

county and date fixed effects. These alternative estimators confirm that safer-at-

home orders have a negative and statistically significant effect on PM2.5.

3.3 Graphical Evidence

We provide a visual representation of the reduction in pollution from the implemen-

tation of a safer-at-home order in Figure 3.16 This figure plots estimated PM2.5

levels at daily intervals pre- and post-statewide order. The associated equation is:

ycst = α +
100∑

n=−40

βn(DaysSinceLockdown = n) + γc+ δt +X ′cstω + εcst (2)

This specification decomposes the level of PM2.5 by the number of days before

and since the state order. The regression includes county and date fixed effects

in addition to our full set of weather and policy controls. We plot the estimated

15Of note, once we add precipitation as a control, the point estimate becomes positive for the
restricted sample. This is potentially due to the fact that precipitation could affect the estimates
of AOD by inadvertently removing days with haze mistaken for cloud cover.

16See Appendix Figure A7 for leads and lags of the dependent variable Air Quality Index (AQI).
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difference between PM2.5 levels compared to the date that the state order was

implemented (which is set to zero). The time window is 40 days before to 100 days

after the policy is implemented. The dashed lines represent robust 95% confidence

intervals.

Figure 3 shows that PM2.5 levels, within-county and conditional on our covari-

ates, were relatively stable from 40 days before up to the implementation of the

statewide order. We begin to see a slight reduction in PM2.5 emissions once the

order is implemented, with a much steeper decrease in the weeks following imple-

mentation. The negative impact is at its largest at the end of the time window,

suggesting that a safer-at-home order’s impact on air pollution persists in the weeks

following the moment orders are lifted (i.e., all lifted after day (t+80)).

3.4 Strictness of Order and Heterogeneity Analyzes

In Appendix Table A9, we test whether the estimated air pollution reduction during

a safer-at-home order is related to the strictness of the order. Our variables of

interest are dummies for “low” safer-at-home order intensity and “high” safer-at-

home order intensity. Our estimates show that higher intensity orders are associated

with a larger decrease in air pollution than lower intensity orders. This result has

important policy implications since the strictness of orders may be related to many

factors such as economic losses and mental health distress.

We investigate whether the magnitude of the documented effect of safer-at-

home policies on pollution is related to county-level characteristics in Appendix

Table A10. More precisely, we test whether more urban, younger, and Democrat

counties experienced a larger decrease in PM2.5 following the implementation of a

safer-at-home order.17 In columns 1 and 2, we split the sample for over and below

county urbanization of 50%, respectively. We find that the estimated decrease is

about 25% larger for urban counties than rural counties, confirming our previous

finding that more populous counties are more affected by state orders.

In columns 3 and 4, we restrict the sample for counties in which a majority of

voters voted for President Trump during the 2016 Presidential Election. Column 4

restricts the sample to the other counties. We find that the decrease in pollution

is much smaller in counties that supported President Trump in 2016. This finding

is in line with Engle et al. (2020), who document that counties with a lower share

of votes for Republicans comply more with safer-at-home orders. We confirm this

pattern in Appendix Table A11. Of note, we find that ‘Trump’ counties are also

different in many other aspects that may be correlated with the ability to reduce

17Data on the share of urban population is based 2010 Census data. Urbanization rate comes
from the American Community Survey (ACS-5 years estimates).
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emissions. Readers should therefore be careful when interpreting the findings of

this heterogeneity analysis.

Column 5 (6) restricts the sample to counties with relatively more (less) indi-

viduals aged at least 65 years old (split by median). We find that counties with

relatively more young people experienced a larger decrease in PM2.5, perhaps due

to more work being done remotely during-lockdown.

We explore this possibility in columns 7 and 8. We split the sample into counties

within states which have above and below median shares of occupations that can

be done from home. These classifications of the feasibility of working from home

in a given occupation come from Dingel and Neiman (2020) and associated coding

provided by those authors and Ole Agersnap. Column 7 (8) corresponds to counties

in states with an above (below) median share of occupations able to be done from

home. We find that counties in states with a greater ability to work from home

experience a slightly larger decrease in PM2.5.

3.5 Europe

We now explore the impact of countrywide lockdowns on pollution in Western Eu-

rope. This exercise serves at least two purposes. First, examining the European

case is worthy of study in itself. Second, it serves as a test of external validity for

our U.S. results. At the time of writing, some form of lockdown had been applied

to the residents of most European countries - we focus on France, Germany, Italy,

Spain, and the United Kingdom, the largest countries in Europe by population.

For this analysis, we examine how national-level orders affected PM2.5 concen-

trations at the sub-national level. We divided each country into administrative units

at a similar administrative level to United States counties for comparability. A total

of 841 areas are used with 96 from France (roughly corresponding to départments),

403 from Germany (roughly corresponding to kreise), 113 from Italy (roughly cor-

responding to provinces), 55 from Spain (roughly corresponding to provinces) and

192 from the United Kingdom (roughly corresponding to counties).

Air pollution data was provided by the European Environmental Agency. Pol-

lution remains measured in µg/m3 at the population-weighted centroid for each

administrative unit (determined in Hall et al. (2019)). The mean PM2.5 concentra-

tion during the period is 8.7µg/m3, and the within-unit standard deviation is 6.0.

Temperature and precipitation use the same dataset from our U.S. estimates.

Data on lockdowns come from the Coronavirus Government Response Tracker

produced by the University of Oxford. This dataset tracks worldwide national (and

in rare cases) subnational government responses to the COVID-19 pandemic. We

chose this data set because of its uniform coding over the different countries we ex-
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amine, and a centralized and curated count of confirmed cases and deaths. Further,

the uniformity of the mask mandate, quarantine mandate and school closures coding

between countries is also valuable. The main drawback to this data set is that the

government response, cases, deaths, and policy variables are at the national-level.

Our main results for Europe are presented in Table 4. The dependent variable in

all columns is PM2.5 measured in µg/m3. We control for the number of COVID-19

cases and deaths at the national-level. The estimate for our countrywide lockdown

is statistically significant at the 1% level and suggests that the introduction of a

lockdown reduces PM2.5 levels by about 1.7 µg/m3 in our preferred specification.

The mean of the dependent variable for pre-lockdown days is about 10.7 µg/m3,

suggesting that European lockdowns decreased air pollution by about 16%.

We also document the effect of lockdowns for each country separately in Ap-

pendix Table A12. Our country-level controls are necessarily dropped for this anal-

ysis since we estimate the effect of a national lockdown for each of the countries

separately. We find large and significant reductions in air pollution for all five

countries.18

Last, in Appendix Figure A8, we present our leads and lags estimates for Europe,

using the specification which decomposes the level of PM2.5 by the number of

days before and since the national order. Following a lockdown, we see a general

reduction in air pollution levels. This (admittedly messy) trend continues downward

for approximately 15 days before reversing slowly and returning to pre-order levels

around 75 days after the initial lockdown is released. This return to normal levels

and its ‘spiky’ estimation likely reflects both underlying heterogeneity in strictness

of orders and different country implementation and lifting of orders.

4 Safer-at-Home Orders and Collisions

We now present the main results for collision. Safer-at-home orders are implemented

primarily to save lives by limiting the spread of the virus through social distancing,

non-critical business closures, and restriction to only necessary activities. As a by-

product, these orders can also result in fewer vehicles on the road– directly reducing

air pollution, collisions, and perhaps even fatalities. As motor vehicle collisions are

one of the leading causes of deaths for Americans, these unintended benefits would

suggest that the number of lives saved by safer-at-home orders may be more than

expected.19

18Of note, we document that Germany’s partial order also led to a large decrease in air pollution,
potentially suggesting that the stringency of lockdowns might not be related to the decrease in
PM2.5 concentrations. See Brodeur et al. (2021) for more details on the stringency of European
lockdowns.

19Deaths from motor vehicle collisions are surpassed only by heart disease, malignant neoplasms,
and unintentional poisoning (both heart disease and malignant neoplasms have been connected to
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4.1 Main Results

In Table 5, we estimate the effects of state orders on the collision incidence rate

in a county, per day.20 We present the incidence-rate ratios of a Poisson count

model with county and date fixed effects; an estimate below one is a reduction in

the dependent variable. The time period is January 1st, 2020 through the moment

the statewide safer-at-home order ends.21 The structure of the table is the same as

Table 2.

In the first column, we estimate that a state order reduces the incidence of

collisions by 16%.22 In columns 2–3, we introduce the number of COVID-19 cases

and deaths, respectively. Regardless of the underlying severity of the infection, the

effectiveness of the state order remains large and statistically significant. In the

fourth column, we introduce the set of other policies, while column 5 adds weather

controls.23 Introducing these additional variables in the model decreases the size of

the coefficient (i.e., increases the decrease in car collision) and has no effect on the

significance of the estimates. In column 5, the estimate suggest that safer-at-home

orders decrease daily collisions by 20%. As there are approximately 1.4 collisions

for treated counties per county and per day during the safer-at-home order, this

reduction implies a counterfactual of about 1.7 collisions results in a reduction of

0.35 collisions per day per county.

In Appendix Table A14, we repeat the analysis presented in Appendix Table

A2 and test whether counties that implemented an order prior to a statewide order

are differently affected than counties that did not implement their own order. The

estimate suggests that safer-at-home orders decrease car collisions for both sets of

counties with a slightly larger decrease for counties that implemented an order prior

to the statewide order. In addition, we find that conditional on the presence of a

statewide order, county orders also statistically significantly decrease collisions. The

estimated negative effect of a county order is equal to that of the statewide order,

suggesting that counties also have the ability to significantly reduce collisions by

issuing safer-at-home orders, even when under the influence of a statewide order.

To sum up, we find that state and county orders significantly decrease collisions.

This result is quite important given the large number of car crash fatalities in the

PM2.5 exposure).
20See Appendix Table A13 for the analysis at the state-level rather than at the county-level.

Our conclusions remain unchanged.
21The sample includes 1,711 counties. Counties with no collisions during the entire time period

are excluded from the sample.
22Figure 4 confirms this pattern. This figure plots regression coefficients for collisions corre-

sponding to number of days before/after state order issued.
23Precipitation increases daily collisions in our sample, while higher maximum temperature is

associated with fewer collisions - unsurprising when the sample period assigns rising temperatures
to coming out of winter rather than entering into the hottest months of summer.
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U.S. (about 35,000 in 2016).

4.2 Graphical Evidence

We provide a visual summary of the collision impact in Figure 4. This figure is

similar to Figure 3 and plots the estimated collision levels at daily intervals pre-

and post-statewide order (as in equation 2). Our estimates are not statistically

significant from 40 days to a few days prior to the implementation of the order.

There is a small increase in collisions a few days prior to the implementation of the

order, perhaps due to growth in traffic for last minute shopping. Then we document

a large decrease in collisions during safer-at-home orders, with the largest estimated

coefficients from 45 to 80 days post-order. In other words, collisions are significantly

reduced for as long as safer-at-home orders are in place. Once orders start to be

lifted (i.e., all lifted after day (t+80)), the effect of the order on collision decreases in

magnitude and becomes insignificant around 95 days after the order. These results

suggest that orders do not have persistent effect on collisions.

4.3 Severity of Collisions

We now turn to the impact of safer-at-home orders on the severity of collisions.

The severity of each collision is coded based on traffic flow/disruption and graded

from one to four by the data providers. A value of one indicates a short delay as

a result of the accident while a four indicates a significant impact on traffic, i.e.,

a long delay. Before the order period, the least common category of collision was

the least severe. During the order period, the least common category was the most

severe. During both periods, the most common severity of a collision is category

two.

The estimates are presented in Table 6. All columns include our full set of con-

trols. Column 1 reproduces our main results for any of the collision severities, while

columns 2–5 look at the impact of state-wide orders on each of the four severity cat-

egories, respectively. The number of counties varies across columns since counties

with no collisions in a given severity category are omitted.24 Our estimates suggest

that statewide safer-at-home orders significantly decreased collisions of severity one

and two, by 14% and 23% respectively. There is no effect for the second-to-most

severe crashes. Interestingly, we document increases in the most severe type of col-

lisions, with an increase of 18% (a large percentage increase, however, this increase

is relative to a small baseline). This result is in line with the idea that some drivers

might be speeding more during lockdowns, which could lead to an increase in severe

(and often fatal) collisions.

24See Table 1 for summary statistics.
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4.4 Strictness of Order and Heterogeneity Analyzes

We now check whether more stringent safer-at-home orders lead to a greater de-

crease in collisions than orders simply recommending to stay home. The estimates

are presented in Appendix Table A9, columns 3 and 4. Again, our variables of

interest are dummies for “low” safer-at-home intensity and “high” safer-at-home in-

tensity. Our estimates show that both types of orders lead to a decrease in collisions

of about the same magnitude.

Appendix Table A15 provides the heterogeneity analysis by county characteris-

tics. The structure of this table is similar to Appendix Table A10. We find that

the decrease in collisions is driven entirely by urban counties, with a significant de-

crease of about 23% in daily collisions. By political divide, we also find that counties

that supported President Trump in 2016 have a smaller reduction in collisions than

those who did not. By resident age, the difference seems to be small. We find that

the decrease in collisions is very large and significant for counties in states with

above median shares of occupations that can be done remotely, while the estimate

is slightly greater than one (corresponding to an increase in collisions) for counties

below the median shares.

To sum up, our results suggest that the documented decrease in collisions does

not persist over time, is driven by urban counties, counties with lower support for

President Trump, and counties in which workers are more able to work remotely.

5 Stay-Home Orders, Social Distancing and Collisions

We now investigate one of the mechanisms through which safer-at-home policies

might have impacted car collisions; changes in social distancing behaviors. For this

analysis, we rely social distancing cell phone data from Unacast.

We proceed in three steps. First, we note that a large number of studies have

documented the impacts of safer-at-home on social mobility, including our own

working paper Brodeur, Cook and Wright (2020). See, for instance, Brodeur, Grig-

oryeva and Kattan (2020) and Cicala et al. (2020) who rely on Unacast data and

provide evidence that safer-at-home policies decreased total distance traveled.25

Second, we test whether safer-at-home orders changed the daily distribution of

car collisions. In other words, we want to explore whether or not the change in col-

lisions caused by safer-at-home orders is partly coming from a change in the timing

of travel (and therefore a change in the relative congestion levels of different times

of day) rather than entirely due to reductions in travel. In addition this may have

25This relationship has also been shown by Google back in
April 2020 (see https://www.theverge.com/2020/4/3/21206318/

google-location-data-mobility-reports-covid-19-privacy).
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implications for the composition of collisions in terms of single or multiple vehicles

involved. Figure 5 illustrates the distribution of collisions across all hours of the

day for our sample period and the corresponding time period in 2019. We find that

the timing of collisions changed in 2020 in comparison to 2019, with more collisions

in 2020 occurring during the afternoon and less during the night and early rush

hour. A large literature documents a positive or concave relationship between traf-

fic/congestion and car crashes (e.g., Gwynn (1967); Head (1959); Schoppert (1957);

Zhou and Sisiopiku (1997)). See Retallack and Ostendorf (2019) for a literature

review. It is posited that this relationship could be a result of aggregating single

vehicle and multi-vehicle collisions where single vehicle collisions are high during

periods of little congestion and multi-vehicle collisions are high during periods of

high congestion. As safer-at-home orders increase work from home and decrease

mobility, we should expect to see less congestion and as a consequence fewer colli-

sions during the typical rush hour periods. Similarly, as individuals now have more

flexibility in their schedules, we might expect trips to be displaced across hours of

the day rather than eliminated entirely and as a consequence we should expect an

increase in fatal collisions. While we do not observe collision fatality directly, we

do provide evidence of increased collision severity as measured by traffic delays in

Table 6. Overall, these findings provide suggestive evidence that the increase in

more severe collisions during safer-at-home orders is partly due to a shift in the

distribution of traffic (and therefore congestion) across hours of the day.

Third, we document the relationship between travel distance and collisions by

exploiting large variation in mobility due to safer-at-home orders. As the typical

structure of work days and commutes was significantly altered by safer-at-home

orders, it is possible that the positive or concave relationship between conges-

tion/traffic and collisions no longer holds while they are in effect. While social

mobility data does not provide direct evidence of congestion, we can use this data

to explore the suggestive evidence of the relationship between travel and collisions

using the exogenous variation in traffic from safer-at-home orders. However, we

are unable to say anything about the concave nature of the relationship using our

empirical strategy.

To attempt to achieve exogenous variation of mobility at the county-level, we

instrument travel distance with statewide safer-at-home orders. The rationale for

the instrument is that statewide orders led to a large decrease in mobility, which

we exploit to document the relationship between mobility and collisions.

More precisely, we estimate:{
Travelcst = ρ+ φ · StateSaferst +X ′cstψ + θc + κt + νcst

Ycst = α + δ ˆTravelcst +X ′cγ + θc + κt + εcst,
(3)
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where StateSaferst equals one once the state has implemented the order and zero

for the pre-policy period. We run a first stage in which we regress this variable on

the travel distance at the county-level, including all controls and fixed effects as in

Equation 1. Then we plug in the predicted values of this first stage and estimate the

second stage of the 2SLS. The dependent variable in the second stage is the number

of traffic collisions. The time period is March 1st, 2020 through the moment the

statewide safer-at-home ended.

For our instrument to be valid two conditions have to hold. First, our instru-

ment has to be a strong predictor of travel distance. As mentioned before, a large

literature showed that statewide safer-at-home orders significantly decreased mobil-

ity. The F-statistic for the first stage is about 1733 confirming the strong negative

impact of orders on mobility.

Second, in order for our instrument to allow a causal interpretation, statewide

orders must only affect the number of collisions through its effect on social mobility,

i.e., the exogeneity assumption. We believe this condition is unlikely to hold in our

setting given the documented effect of lockdowns on economic activity and other

socioeconomic variables. This is an issue in our setting since it is plausible that labor

force status and work arrangements are related to driving behavior. Nonetheless, we

proceed with our 2SLS exercise, but caution readers that the exclusion restriction

is likely violated.

Table 7 presents our estimates of Equation 3. Column 1 is for all counties,

column 2 corresponds to majority urban counties, and column 3 to majority rural

counties. The estimate in column 1 suggests that a 100% increase in travel dis-

tance relative to the baseline period is associated with 4 additional car collisions

per county-day. The estimate is statistically significant at conventional levels. The

estimate in column 2 is also statistically significant and suggests a 100% increase

in travel distance relative to the baseline period is associated with just over 9 addi-

tional collisions per county-day in urban counties. Meanwhile, we find no evidence

that changes in travel distance induced by safer-at-home orders reduce collisions

in rural counties. Taken together, these findings provide suggestive evidence that

the reduction in collisions stemming from safer-at-home orders is being modulated

through mobility and is driven by urban counties rather than rural counties. Con-

sistent with the existing literature, the positive relationship between congestion

(proxied for by travel distance) and collisions remains during the COVID-19.

To summarize, we argue that safer-at-home orders led to a decrease in social

mobility and a shift in the timing of traffic away from traditionally congested pe-

riods, and show suggestive evidence that these are two of the main driving forces

behind the observed reduction in collisions and increase is collision severity.
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6 Interpretation

In this section, we provide back-of-the-envelope calculations of the benefits from pos-

itive pollution and collision externalities generated by safer-at-home orders. Our

calculations here are, in part, based on the growing literature estimating the re-

vealed - rather than stated - willingness to pay (WTP) for air quality. It is also

important to note that most studies do not provide estimates of the WTP for tem-

porary reductions in air quality, but instead attempt to identify the WTP of a

permanent reduction in pollution. This means that our calculations are based on

the assumption that individuals value a temporary abatement at the average annual

value of a permanent reduction pro-rated for the duration of the abatement period,

in this case the duration of the safer-at-home order. Note that these calculations ig-

nore possible WTP increases for clean air during COVID-19, as recent research has

begun to identify increased mortality from and transmission of the virus with higher

levels of contemporaneous air pollution (Zhang et al. 2020, Pansini and Fornacca

2020).

We first review the literature. Currie et al. (2015) exploit the effect of toxic

plant openings to estimate the impact of air quality on American house values and

birth weights. They find an 11% reduction in house values and a 3% increase in low

birth weights in nearby households. Recent work by Ito and Zhang (2020) using

purchases of air purifiers in China suggests that the mean WTP for 1 µg/m3 reduc-

tion of PM10 is 1.34 USD annually - and increases strongly with household income.

For a household making 10,000 USD per year (the upper limit of the sample), they

estimate a marginal willingness to pay of 5 USD per 1 µg/m3 PM10. Chay and

Greenstone (2005) study housing price evolutions in the 1970’s and ’80s in Amer-

ican counties that were quasi-randomly assigned federally mandated air pollution

regulations. They find that a one unit decrease in particulates (all suspended par-

ticulates - what was targeted by the regulations) results in a 0.7 to 1.5 percent

increase in house values. Deschênes et al. (2017) quantify the defensive investment

portion of willingness to pay for air pollution reduction to be around one third - and

that nitrogen oxide reduction program benefits ‘easily’ exceed costs. Barwick et al.

(2017) estimate that the lower bound of the annual WTP for a 10 µg/m3 reduction

in PM2.5 is 9.25 USD per Chinese household, or 7% of total healthcare spending.

Finally, Bayer et al. (2016) estimate the WTP to avoid ozone using house purchases

in the San Francisco Bay Area, finding a 10% reduction in pollution commanded a

price almost equal to a 10% reduction in violent crime.

We now turn to our back-of-the-envelope calculations. To calculate these, we

first rely on estimates from the U.S. to compute the WTP associated with our

estimated 7%–25% reduction in PM2.5. We then scale the estimates to the duration
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of each state’s safer-at-home order and aggregate over the number of households

in the state (drawn from the 2018 American Community Survey) before finally

aggregating WTP over all states implementing policies.

Recall that our estimates from Table 2 indicate that the introduction of safer-

at-home orders decreased pollution by about 1.4 µg/m3 while Appendix Table A8

provides an estimate of 0.4 µg/m3. We also note that Bayer et al. (2016) find

that American home owners are willing to pay between about 300 USD annually

for a 10% reduction in one pollutant; the WTP associated with our estimated

7%–25% reduction in PM2.5 could thus be as high as 210–750 USD annually per

household.26 Using WTP estimates from the most appropriate American samples,

we find estimated benefits of 154 million to 500 million USD using the adapted

WTPs from Bayer et al. (2009) (who estimate that the marginal WTP for an annual

1 µg/m3 reduction in PM10 for United States metropolitan areas to be 22 USD

per household), and 3.6 billion to 13.1 billion USD using the adapted estimates

from Bayer et al. (2016). These estimates vary widely, no doubt due to the many

assumptions necessary to compute figures at the aggregate level. However, they

serve to give a sense of the order of magnitude of the possible environmental benefits

these orders have.

There are also extensive costs associated with traffic collisions, from congestion

impacts; to medical and repair bills; to loss of life. We generate rough estimates of

the benefits of reduced collisions using the National Highway Traffic Safety Admin-

istration’s (NHTSA) estimates that the average cost of collisions in 2013 was 17,794

USD (2010, 21,054 USD in 2020) per crash.27 When accounting for quality-of-life

valuations, the estimates are an average of 61,470 USD (2010, 72,732 USD in 2020)

per crash.

Our estimates in Table 5 suggest a reduction in collisions of 20%. The mean num-

ber of crashes during safer-at-home orders among treated counties was 1.4 crashes

per day, implying that the counterfactual crash rate would have been about 1.77

crashes per day per county. Applying our estimates to the 124,370 county-days

spent under safer-at-home policies suggests that over 219,000 collisions may have

been avoided by June 30th, 2020. Using the numbers from the NHTSA gives ap-

proximately 15.9 billion 2020 USD in costs avoided as a result of safer-at-home

orders over that period.

A major limitation is that our estimates in Table 6 suggest that we actually see

an increase in more severe collisions while the average effects are driven by reduc-

26While this may seem large, classical estimates from Harrison and Rubinfeld (1978) using
data from the Boston Area following the Clean Air Act placed a WTP for a 25% reduction in air
pollution at approximately 2,000 (1978 USD). Other WTP estimates discussed in Chattopadhyay
(1999) for particulate pollution reductions in the Chicago Area up to 366 USD in 1982-84 dollars.

27See https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812013.
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tions in less severe collisions. This means that our back-of-the-envelope calculations

may overestimate the costs of collisions as while the volume of crashes is declining,

the fatality rate may not be. Unfortunately, our data do not contain information

about fatalities directly and therefore do not allow us examine the extent to which

this could be true.

7 Conclusion

In many respects, safer-at-home policies have been expected and shown to have

negative impacts on societies by, for instance increasing mental health distress and

exacerbating the economic impacts of COVID-19. This paper represents a first step

toward understanding some of the unintended positive effects safer-at-home policies

have on pollution and car crashes.

We rely on a difference-in-differences framework with high frequency air pollu-

tion data and daily collision data. We find that statewide safer-at-home policies

lead to a 25% reduction in PM2.5 concentrations and a 20% reduction in vehicular

collisions; one of the leading causes of death in the United States. We also provide

suggestive evidence that the reduction in collisions is driven in part by reduced

travel associated with safer-at-home orders and by distributional changes to traffic

times that also explain the increase is collision severity. We calculate that over

219,000 collisions may have been avoided by June 30th, 2020, which translates to

approximately $16 billion in costs avoided. The benefits from reduced air pollution

could range from $154 million to $13 billion.

Our paper raises broader questions of the nuance involved in estimating the

costs and benefits of safer-at-home policies. As more data on COVID-19 cases

and deaths became available, it was possible to better estimate how many lives

were saved (Hsiang et al. 2020). But the unintended economic consequences and

large sphere of domains impacted by safer-at-home orders make it a difficult, but

worthwhile, task to estimate the full set of costs and benefits of these policies.
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Figure 1: Counties that Issued an Order

Notes: This map presents counties and states that issued an order prior to April
30, 2020. Counties that issued their own order prior to their state shaded darkest.
For states, the darker the fill, the earlier the state issued the order. States in white
did not issue an order.

Figure 2: States that Issued a Lockdown

Notes: This map presents states that issued an order prior to April 30, 2020. The
darker the fill, the earlier the state issued the order. States in white did not issue
an order.
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Figure 3: PM2.5 Concentrations Over Time

Notes: This figure presents regression coefficients for PM2.5 concentrations corre-
sponding to number of days before/after state order issued. Temperature, precip-
itation, COVID-19 cases and deaths, and other policy controls are included along
with date and county fixed effects. Confidence intervals at 95% presented.

29



Figure 4: Traffic Collisions Over Time
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Notes: This figure presents regression coefficients for collisions corresponding
to number of days before/after state order issued. Temperature, precipitation,
COVID-19 cases and deaths, and other policy controls are included along with date
and county fixed effects. Confidence intervals at 95% presented.
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Figure 5: Traffic Collisions Across Hours of Day
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Notes: This figure presents histograms for collisions across all hours of the day for
our sample period and the corresponding time period in 2019.
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Table 1: Summary Statistics

Mean Std.Dev. Max Min Count
Pollution

PM2.5 6.641 3.534 84.4 0.1 200094
PM2.5 (UK) 9.977 8.015 45.0 1.4 25906
PM2.5 (GE) 8.691 6.427 85.4 .7 66407
PM2.5 (SP) 6.984 4.533 34.9 1.0 9648
PM2.5 (FR) 8.238 5.803 189.1 0.5 23880
PM2.5 (IT) 8.594 4.559 70.6 1.4 29487

Collisions
Collisions 1.770 9.949 811.0 0.0 237408
Severity 1 collisions 0.081 1.095 72.0 0.0 237408
Severity 2 collisions 1.293 8.301 681.0 0.0 237408
Severity 3 collisions 0.334 1.844 116.0 0.0 237408
Severity 4 collisions 0.061 0.537 31.0 0.0 237408

COVID-19
COVID cases per 10k 5.946 22.448 625.5 0.0 237408
COVID deaths per 10k 0.264 1.262 32.0 0.0 237408
County-days under lockdown 0.364 0.481 1.0 0.0 237408
Day care closure 0.125 0.330 1.0 0.0 237408
Eviction moratorium 0.223 0.416 1.0 0.0 237408
Mandatory face mask in public 0.055 0.229 1.0 0.0 237408
Mandatory quarantine for visitors 0.019 0.138 1.0 0.0 237408

Notes: Authors’ calculations. PM2.5 is 24-hour daily concentration of PM2.5 in µg/m3. Collisions data gathered from
Moosavi et al. (2019). The severity of an accident is coded as a number ranging from 1 to 4 with 1 being the smallest
impact on traffic and 4 being a significant impact on traffic.
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Table 2: State Orders and Pollution (PM2.5)

(1) (2) (3) (4) (5)
PM2.5 PM2.5 PM2.5 PM2.5 PM2.5

During safer-at-home-order -1.671 -1.673 -1.673 -1.607 -1.372
(0.454) (0.454) (0.455) (0.496) (0.413)

COVID cases per 10k -0.003 -0.003 -0.003 -0.002
(0.004) (0.004) (0.004) (0.004)

COVID deaths per 10k 0.003 -0.004 -0.006
(0.033) (0.034) (0.035)

Constant 6.704 6.704 6.704 6.709 6.460
(0.809) (0.808) (0.808) (0.816) (0.801)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 200094 200094 200094 200094 200094
Counties 1592 1592 1592 1592 1592

Notes: State orders significantly reduce PM2.5. The dependent variable is average daily PM2.5 concen-
tration at the county-level. The time period spans January 1st, 2020 through the moment the statewide
safer-at-home ended. COVID-19 known cases and deaths per 10,000 people. Robust standard errors clus-
tered at the state-level reported in parentheses. All columns include county and date fixed effects. Sample
restricted to counties within 50km of an air pollution monitoring station.

Table 3: State Orders and Polluted Days

(1) (2) (3) (4) (5)
PM2.5>12 PM2.5>12 PM2.5>12 PM2.5>12 PM2.5>12

During safer-at-home-order -0.103 -0.103 -0.104 -0.099 -0.089
(0.032) (0.032) (0.032) (0.035) (0.031)

COVID cases per 10k -0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

COVID deaths per 10k -0.001 -0.001 -0.002
(0.002) (0.002) (0.002)

Constant 0.109 0.109 0.109 0.109 0.093
(0.039) (0.039) (0.039) (0.039) (0.038)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 200094 200094 200094 200094 200094
Counties 1592 1592 1592 1592 1592

Notes: State orders significantly reduce polluted days. The dependent variable takes a value of 1 if PM2.5 is above the An-
nual National Ambient Air Quality Standard of 12 µg/m3. The time period spans January 1st, 2020 through the moment the
statewide safer-at-home ended. COVID-19 known cases and deaths per 100 people. Robust standard errors clustered at the
state-level reported in parentheses. All columns include county and date fixed effects.
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Table 4: European National Orders and Pollution (PM2.5)

(1) (2) (3) (4) (5)
PM2.5 PM2.5 PM2.5 PM2.5 PM2.5

During lockdown -1.047∗∗∗ -1.069∗∗∗ -0.969∗∗∗ -1.676∗∗∗ -1.690∗∗∗

(0.036) (0.033) (0.036) (0.037) (0.037)
COVID cases per 10k -0.005∗∗∗ -0.003∗∗ 0.003∗∗ 0.006∗∗∗

(0.001) (0.001) (0.001) (0.001)
COVID deaths per 10k -0.117∗∗∗ -0.015 0.034∗∗

(0.015) (0.016) (0.016)
Constant 35.373∗∗∗ 24.137∗∗∗ 24.151∗∗∗ 24.254∗∗∗ 24.055∗∗∗

(0.135) (0.121) (0.121) (0.119) (0.119)
Date FE Y Y Y Y Y
Mask mandate Y Y
Quarantine mandate Y Y
School closures Y Y
Temperature Y
Precipitation Y
Observations 155328 138568 138568 138568 136300

Notes: National orders significantly reduce PM2.5 in France, Germany, Italy, Spain and the United Kingdom.
The dependent variable is average daily PM2.5 concentration, measured at the population centroid for an admin-
istrative area from the three nearest air quality monitors. The mean concentration during the period is 8.7, and
the within-unit standard deviation is 6.0. An observation is an area-day. A total of 841 areas are used with 96
from France (departments), 403 from Germany (kreise), 113 from Italy (provinces), 55 from Spain (provinces)
and 192 from the United Kingdom (counties). Observations are from the first to the 300th day of 2020, which
includes both before, during, and after lockdowns. Standard errors reported in parentheses. All columns include
area and date fixed effects.

Table 5: State Orders and Collisions

(1) (2) (3) (4) (5)
During safer-at-home-order 0.840 0.839 0.838 0.826 0.793

(0.050) (0.050) (0.050) (0.045) (0.045)
COVID cases per 10k 1.002 1.003 1.002 1.002

(0.000) (0.001) (0.001) (0.001)
COVID deaths per 10k 0.986 0.981 0.983

(0.012) (0.011) (0.011)
County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 237569 237569 237569 237569 237408
Counties 1711 1711 1711 1711 1710

Notes: State orders significantly reduce traffic collisions. Poisson model with fixed effects. The dependent
variable is count of traffic collisions at the county-level. Coefficients are incidence rate-ratios, wherein a
value below one indicates a decrease in the dependent variable and a value above indicates an increase.
The time period is January 1st, 2020 through the moment the statewide safer-at-home ended. COVID-
19 known cases and deaths per 100 people. Robust standard errors reported in parentheses. All columns
include county and date fixed effects.
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Table 6: State Orders and Collision Severity

(1) (2) (3) (4) (5)
Any Severity 1 Severity 2 Severity 3 Severity 4

During safer-at-home-order 0.793 0.855 0.769 1.006 1.179
(0.045) (0.031) (0.034) (0.087) (0.146)

COVID cases per 10k .998 0.998 1.001 1.004 1.004
(0.001) (.001) (0.001) (0.001) (0.001)

COVID deaths per 10k 1.033 1.033 0.969 0.970 1.013
(0.011) (.0179) (0.017) (0.012) (0.016)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y Y Y Y
Weather controls Y Y Y Y Y
Observations 237408 60138 207757 166441 145069
Counties 1710 418 1490 1189 1031

Notes: Poisson model with fixed effects. The dependent variable is count of traffic collisions at the county-level. Coef-
ficients are incidence rate-ratios, wherein a value below one indicates a decrease in the dependent variable and a value
above indicates an increase. The time period is January 1st, 2020 through the moment the statewide safer-at-home ended.
COVID-19 known cases and deaths per 100 people. Robust standard errors reported in parentheses for all columns ex-
cept column 2, which is non-singular when robust standard errors are applied. All columns include county and date fixed
effects.

Table 7: Travel Distance and Collisions – Instrumental Variable

(1) (2) (3)
All Urban Rural

Travel Distance 4.061 9.187 0.071
(0.999) (2.576) (0.133)

County FE Y Y Y
Date FE Y Y Y
Case & Death rates Y Y Y
COVID-19 policies Y Y Y
Weather controls Y Y Y
Kleibergen-Papp F-stat 1733 807 755
Observations 159488 159488 228352

Notes: 2SLS with fixed effects. The dependent variable (second stage) is
the number of traffic collisions at the county-level. The instrumental vari-
able is the presence of a statewide safer-at-home policy. The time period is
March 1st, 2020 through the moment the statewide safer-at-home ended.
COVID-19 known cases and deaths per 100 people. Robust standard errors
reported in parentheses. All columns include county and date fixed effects.
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Appendix: NOT FOR PUBLICATION

7.1 Non-Pharmaceutical Interventions

Day care closure: “The date a state closed daycares statewide. Only included

directives/orders. Did not include guidance or recommendations. Order must apply

to entire state.”

Face masks: “The date a state mandated face mask use in public spaces by all

individuals statewide. The order does not have to apply to all public spaces, but

must apply state wide. Only included directives/orders. Did not include guidance

or recommendations. Order must apply to entire state.”

Freezes on evictions: “The date a state stopped the initiation of evictions (over-

all or due to COVID-19 related issues) statewide. This could be mandated from

governors or though the state court system. Did not include guidance or recom-

mendations. Order must apply to entire state.”

Quarantine: “The date a state first mandated that individuals arriving in their

state from any state must undergo quarantine. Did not include guidance or rec-

ommendations. Order must apply to entire state. Quarantine order must apply to

visitors using all forms of transportation to enter the state (not just air travel).”

7.2 Simulations Using Synthetic Control Methods: Pollution

7.2.1 Simulations Methodology Here we detail a robustness check for the mag-

nitude of our findings and construct a slightly different comparison group.

In our setting, areas can be one of three groups at any point in time, a) areas

that have not yet had a state order applied to them b) areas that will never have

a state order applied to them, or c) areas that currently have a state order applied.

In an effort to construct a counterfactual (what would PM2.5 concentrations looked

like in areas that currently have a state order applied), we use synthetic control

methods to form a weighted convex combination of areas that never have a state

order applied for every (eventually) treated area.

The estimates in this paper that use panel fixed effects and within-unit variation

of the treatment variable use as a comparison group areas that are not-yet treated.

This application of the Synthetic Control Methods (SCM) allows us to bring in

information (in the form of a synthetic control area for each treated area) of the

PM2.5 evolution that occurs in states during the treatment period. The SCM

requires statistical ‘donor’ areas - which we restrict to be areas that are not ever

treated - to donate their PM2.5 evolutions to those that are treated. We fit the SCM

counterfactual on their pre-safer-at-home order PM2.5 average concentrations.

To construct our synthetic matching, we follow the steps in Abadie et al. (2010).
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The idea of this method is to match a treated area (with a state order) to a group

of control areas having similar pollution levels prior to the SAH order’s implemen-

tation. The hypothesis is that the treated and control counties would have a similar

change in pollution if the order had not been implemented.

We construct a synthetic match for each of the treated areas by solving the

following optimization problem and finding the optimal vector of weights:

∀i ∈ N,
{
wi∗

j

}
j∈U

= arg min
{
wi

j

}∑
i

∑
t

[
Yit −

∑
j

wi
jYjt

]2
Subject to

∑
j

wi
j = 1 and ∀j ∈ U, ∀i ∈ N, wi

j ≥ 0,

Where Yit is the pollution for county i ∈ N on pre-event t ∈ T. N being the set

of treated areas and T the set of pre-order dates. wi
j is the weight given to county

j ∈ U, the set of control areas.

The pollution level for each synthetic area is constructed as:

Ŷit =
∑
j

wi∗
j Yjt

The estimates are put together in the same manner as regressions elsewhere in

the paper. Each area is equally weighted in the regressions.

7.2.2 Simulation Results The estimates presented in this paper indicate a large

reduction in PM2.5 after a state issues a safer-at-home order. As a robustness check,

we use simulated counterfactual PM2.5 levels for each county in a state that issued

an order using a ‘synthetic’ county constructed using the synth package (described

in Abadie et al. (2011)). The results of this exercise are presented in Appendix

Table A16 while those of a falsification exercise are presented in Appendix Table

A17. The structure of the tables is the same as the bulk of those throughout the

paper. Inference using simulations with these counterfactuals as we construct them

is not explicitly endorsed by Abadie et al. (2010), so we take these results as a

robustness exercise, which provide reassurance that our results are, at the very

least, not simply a statistical artifact. For this reason, we remain silent on the

statistical significance of these estimates but provide them for the curious reader.

In Appendix Table A16, the dependent variable is the difference between the

observed PM2.5 levels and those of the counterfactual. The difference is structured

so that a negative value represents a lower observed PM2.5 concentration than

expected from the counterfactual. To create the counterfactual, we applied the
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synthetic control method separately for each treated county, allowing for different

donor (untreated) county weights to be applied to treated counties as diverse as

those from New York or from Texas. The treated sample is necessarily restricted

to 1418 counties in the 41 states that issued a safer-at-home order during 2020.

During a safer-at-home order, we see a reduction of around 1 µg/m3 in PM2.5

concentration, which is reassuringly close to the estimates presented in Table 2. The

estimates of the reduction are also relatively undisturbed with the introduction of

controls including COVID-19 policies (such as mandatory mask usage) and weather.

In Appendix Table A17, we conduct a placebo-in-space exercise, much in the

spirit of those introduced in Abadie et al. (2010). The dependent variable is the

difference between the observed PM2.5 levels of counties in states that did not

issue a safer-at-home order in 2020 and those of a counterfactual constructed from

counties in the 8 untreated states. To create the counterfactual, we applied the

synthetic control method separately for each untreated county, allowing for different

donor (untreated) county weights to be applied to the current untreated county.

The sample is necessarily restricted to counties in the 8 states that issue a safer-

at-home order during 2020. Reassuringly, this placebo exercise (which assigns a

safer-at-home order when one never occurred) exhibits different behaviour than

our simulation. The sign of the estimates even flips between specifications, with

the inclusion of weather controls. The standard errors are significantly larger, and

calculated in the same manner as in the simulation.

We also provide the same graphical evidence of the leads and lags for this and

the placebo exercise. In Appendix Figure A9, we present the difference between

observed and counterfactual PM2.5 levels from 40 days before to 100 days after a

state order was issued. The results are similar to those presented in Figure 3. In

contrast, the estimates for the placebo exercise presented in Figure A10 are much

smaller and exhibit a flat trajectory before and after the placebo order’s issuance.
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Figure A1: COVID-19 Confirmed Cases per 10,000 by County

Notes: The map illustrates the cumulative number of (confirmed) COVID-19 cases
per 10,000 inhabitants for each county as of May 1, 2020.

Figure A2: COVID-19 Deaths per 10,000 by County

Notes: The map illustrates the number of COVID-19 deaths per 10,000 inhabitants
for each county as of May 1, 2020.
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Figure A3: Weekly Average PM2.5 Concentrations March 1-7, 2020

Notes: This map presents PM2.5 concentrations for a baseline week of March 1-7.
PM2.5 measures for counties with a population weighted centroid within 50km of
an air quality monitoring station.

Figure A4: Weekly Average PM2.5 Concentrations April 19-25, 2020

Notes: This map presents PM2.5 concentrations for near end of April 2020. PM2.5
measures for counties with a population weighted centroid within 50km of an air
quality monitoring station.
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Figure A5: Distribution of PM2.5 Concentrations

Notes: This figure illustrates the distribution of our dependent variable PM2.5
Concentrations for all county-days in our sample, i.e., all observations.
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Figure A6: Distribution of Aerosol Optical Depth

Notes: This figure illustrates the distribution of our dependent variable aerosol
optical depth for all county-days in our sample, i.e., all observations.
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Figure A7: Air Quality Index (AQI) Over Time

Notes: This figure presents regression coefficients for Air Quality Index (AQI) cor-
responding to number of days before/after state order issued. Date and county fixed
effects included. We also include our full set of weather and policy controls. The
lockdown date is presented with a red line. Confidence intervals at 95% presented.
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Figure A8: PM2.5 Concentrations Over Time (Europe)

Notes: This figure presents regression coefficients for PM2.5 concentrations corre-
sponding to number of days before/after national order issued. Area and date fixed
effects included. We also include our full set of weather and policy controls. The
baseline date is presented with a red line. Confidence intervals at 95% presented.
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Figure A9: PM2.5 Concentrations Over Time - Synthetic Control

Notes: This figure presents the evolution of the difference between observed and the
(simulated) counterfactual levels of PM2.5 expected from a synthetic control for each
treated county, before and after state orders. Plotted are regression coefficients of
days since state order issued. Significance bands at the 95% level. County fixed
effects model. Date fixed effects also included.
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Figure A10: PM2.5 Concentrations Over Time - Synthetic Placebo

Notes: The dependent variable is the difference between the observed PM2.5 levels
of counties in states that did not issue a safer-at-home order in 2020 and those of a
counterfactual county constructed from the remaining counties in the 8 untreated
states. Plotted are regression coefficients of days since state order issued. Signifi-
cance bands at the 95% level. County fixed effects model. Date fixed effects also
included.
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Table A1: State Orders and Pollution: State-Level

(1) (2) (3) (4) (5)
PM2.5 PM2.5 PM2.5 PM2.5 PM2.5

During safer-at-home-order -1.476 -1.491 -1.486 -1.429 -1.152
(0.439) (0.440) (0.438) (0.458) (0.371)

COVID cases per 10k -0.005 -0.008 -0.005 0.006
(0.004) (0.012) (0.015) (0.015)

COVID deaths per 10k 0.039 -0.031 -0.153
(0.135) (0.165) (0.164)

Constant 6.513 6.513 6.513 6.517 6.367
(0.833) (0.834) (0.834) (0.838) (0.868)

State FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 5713 5713 5713 5713 5713
Counties 41 41 41 41 41

Notes: State orders significantly reduce PM2.5. The dependent variable is average daily PM2.5 concentra-
tion at the state-level. The time period is January 1st, 2020 through the moment the statewide safer-at-
home ended. COVID-19 known cases and deaths per 10,000 people. Robust standard errors reported in
parentheses. All columns include state and date fixed effects.

Table A2: State Orders and Pollution (PM2.5): Proactive and Reactive Counties

All Proactive Reactive
(1) (2) (3) (4) (5) (6)

During state order -1.440 -1.372 -1.729 -1.170 -1.367 -1.286
(0.372) (0.413) (0.455) (0.609) (0.398) (0.420)

During county order -0.501 -0.447
(0.287) (0.302)

COVID cases per 10k -0.002 -0.013 -0.002
(0.004) (0.004) (0.004)

COVID deaths per 10k -0.006 -0.421 -0.008
(0.035) (0.427) (0.034)

Constant 6.451 6.460 10.623 10.737 6.078 6.083
(0.790) (0.801) (2.574) (2.728) (0.675) (0.681)

Date FE Y Y Y Y Y Y
COVID-19 policies Y Y Y
Weather controls Y Y Y Y Y Y
Observations 200094 200094 15220 15220 184874 184874
Counties 1592 1592 118 118 1474 1474

Notes: The dependent variable is average daily PM2.5 concentration at the county-level. Proactive counties implemented
their own orders. Reactive counties had only state orders issued. The time period is January 1st, 2020 through the mo-
ment the statewide safer-at-home ended. COVID-19 known cases and deaths per 10,000 people. Robust standard errors
clustered at the state-level reported in parentheses. All columns include county and date fixed effects. Sample restricted
to counties within 50km of an air pollution monitoring station.
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Table A3: State Orders and Pollution (PM2.5): Weighted Estimates

(1) (2) (3) (4) (5)
PM2.5 PM2.5 PM2.5 PM2.5 PM2.5

During safer-at-home-order -2.522 -2.534 -2.549 -2.567 -2.069
(0.681) (0.663) (0.660) (0.638) (0.453)

COVID cases per 10k -0.008 -0.001 -0.001 0.001
(0.004) (0.007) (0.008) (0.008)

COVID deaths per 10k -0.109 -0.126 -0.142
(0.062) (0.069) (0.077)

Constant 11.200 11.199 11.199 11.215 10.394
(2.013) (2.024) (2.024) (2.027) (1.980)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 200094 200094 200094 200094 200094
Counties 1592 1592 1592 1592 1592

Notes: State orders significantly reduce PM2.5, weighted by county population. The dependent variable is
average daily PM2.5 concentration at the county-level. The time period spans January 1st, 2020 through
the moment the statewide safer-at-home ended. COVID-19 known cases and deaths per 100 people. Stan-
dard errors clustered at the state-level reported in parentheses, clustered at the state-level. All columns
include county and date fixed effects.

Table A4: State Orders and Air Quality Index

(1) (2) (3) (4) (5)
AQI AQI AQI AQI AQI

During safer-at-home-order -6.240 -6.251 -6.251 -6.003 -5.093
(0.307) (0.308) (0.308) (0.326) (0.288)

COVID cases per 10k -0.012 -0.012 -0.013 -0.008
(0.005) (0.008) (0.008) (0.008)

COVID deaths per 10k -0.000 -0.022 -0.034
(0.100) (0.107) (0.105)

Constant 25.591 25.591 25.591 25.611 24.695
(0.436) (0.436) (0.436) (0.438) (0.438)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 200094 200094 200094 200094 200094
Counties 1592 1592 1592 1592 1592

Notes: State orders significantly reduce Air Quality Index. The dependent variable is average daily AQI.
The time period spans January 1st, 2020 through the moment the statewide safer-at-home ended. COVID-
19 known cases and deaths per 10,000 people. Robust standard errors clustered at the state-level reported
in parentheses. All columns include county and date fixed effects.
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Table A5: State Orders and Air Quality Risk

(1) (2) (3) (4) (5)
AQI>50 AQI>50 AQI>50 AQI>50 AQI>50

During safer-at-home-order -0.098 -0.098 -0.098 -0.093 -0.084
(0.031) (0.031) (0.031) (0.033) (0.030)

COVID cases per 10k -0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

COVID deaths per 10k -0.001 -0.002 -0.002
(0.002) (0.002) (0.002)

Constant 0.097 0.097 0.097 0.097 0.082
(0.036) (0.036) (0.036) (0.037) (0.036)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 200094 200094 200094 200094 200094
Counties 1592 1592 1592 1592 1592

Notes: State orders significantly reduce Air Quality Risk of being in ‘code yellow’ or above. The dependent vari-
able indicates if average daily AQI exceeds 50, the threshold for moderate health effects from air pollution. The
time period spans January 1st, 2020 through the moment the statewide safer-at-home ended. COVID-19 known
cases and deaths per 10,000 people. Robust standard errors clustered at the state-level reported in parentheses.
All columns include county and date fixed effects.

Table A6: State Orders and Aerosol Optical Depth (Restricted)

(1) (2) (3) (4) (5)
AOD AOD AOD AOD AOD

During safer-at-home-order -2.065 -2.055 -2.165 -1.510 1.092
(6.909) (6.904) (6.905) (6.365) (5.233)

COVID cases per 10k 0.019 0.094 0.082 0.091
(0.043) (0.070) (0.070) (0.066)

COVID deaths per 10k -1.448 -1.717 -1.775
(0.946) (0.964) (0.938)

Constant 38.944 38.937 38.965 38.897 18.538
(5.181) (5.171) (5.170) (5.158) (6.173)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 41697 41697 41697 41697 41697
Counties 1541 1541 1541 1541 1541

Notes: State orders reduce aerosol optical depth. The dependent variable is aerosol optical depth. The
time period spans January 1st, 2020 through the moment the statewide safer-at-home ended. COVID-19
known cases and deaths per 10,000 people. Robust standard errors clustered at the state-level reported in
parentheses. All columns include county and date fixed effects. The sample is restricted to counties within
50km of a monitoring station.
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Table A7: State Orders and Aerosol Optical Depth (All)

(1) (2) (3) (4) (5)
AOD AOD AOD AOD AOD

During safer-at-home-order -2.832 -2.823 -2.852 -2.328 -0.541
(5.276) (5.273) (5.277) (5.103) (4.264)

COVID cases per 10k 0.025 0.056 0.051 0.054
(0.033) (0.052) (0.050) (0.047)

COVID deaths per 10k -0.717 -0.873 -0.804
(0.778) (0.765) (0.745)

Constant 35.593 35.585 35.596 35.473 16.872
(5.485) (5.479) (5.478) (5.492) (7.376)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 77279 77279 77279 77279 77279
Counties 2532 2532 2532 2532 2532

Notes: State orders significantly reduce aerosol optical depth. The dependent variable is aerosol optical
depth. The time period spans January 1st, 2020 through the moment the statewide safer-at-home ended.
COVID-19 known cases and deaths per 10,000 people. Robust standard errors clustered at the state-level
reported in parentheses. All columns include county and date fixed effects.

Table A8: State Orders and Pollution (PM2.5) Alternative Estimators

(1) (2) (3) (4)

Baseline
Simple

Average
Dynamic
Average

Group
Average

During safer-at-home-order -1.671 -1.027 -0.749 -0.449
(0.084) (0.157) (0.164) (0.144)

County FE Y Y Y Y
Date FE Y Y Y Y
Observations 200094 200094 200094 200094
Counties 1592 1592 1592 1592

Notes: State orders significantly reduce PM2.5. The dependent variable is average daily PM2.5 con-
centration at the county-level. Column 1 contains the baseline estimate. Columns 2–4 provide al-
ternative estimators based on Callaway and Sant’Anna (Forthcoming): the “simple” aggregated av-
erage treatment on the treated (ATT), the “dynamic” aggregated ATT, and the “group” aggregated
ATT, respectively. The time period spans January 1st, 2020 through the moment the statewide
safer-at-home ended. Robust standard errors clustered at the state-level reported in parentheses.
All columns include county and date fixed effects. Sample restricted to counties within 50km of an
air pollution monitoring station.
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Table A9: Stringency of State Orders

PM2.5 Collisions
(1) (2) (3) (4)

Less Stringent Order -0.194 -0.110 0.899 0.872
(0.714) (0.592) (0.008) (0.008)

More Stringent Order -0.903 -0.778 0.937 0.897
(0.656) (0.539) (0.009) (0.008)

COVID-19 Cases -0.003 -0.002 1.002 1.002
(0.004) (0.004) (0.000) (0.000)

COVID-19 Deaths 0.002 -0.003 0.985 0.987
(0.034) (0.034) (0.002) (0.002)

Constant 6.693 6.462
(0.163) (0.163)

County FE Y Y Y Y
Date FE Y Y Y Y
COVID-19 policies Y Y Y Y
Weather controls Y Y
Observations 190370 190370 270875 270714
Counties 1592 1592 1894 1893

Notes: The dependent variable is average daily PM2.5 concentration at the county-
level for columns 1 and 2 and count of traffic collisions at the county-level for columns
3 and 4, respectively. The time period spans January 1st, 2020 through the moment
the statewide safer-at-home ended. COVID-19 known cases and deaths per 10,000
people. Robust standard errors clustered at the state-level reported in parentheses for
columns 1 and 2. Robust standard errors reported in parentheses for columns 3 and 4.
All columns include county and date fixed effects.
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Table A11: Characteristics of Trump and non-Trump Majority Counties (Pre-Order Time Period)

(1) (2) T-test
Non-Trump Trump Difference

Variable N Mean/SD N Mean/SD (1)-(2)

PM2.5 23063 6.649
(3.602)

131957 6.398
(3.679)

0.250

PM2.5 > 12 23063 0.082
(0.274)

131957 0.065
(0.247)

0.016

Travel distance 22669 -0.118
(0.195)

127003 -0.106
(0.180)

-0.011

Urban County 23101 0.700
(0.458)

132433 0.307
(0.461)

0.392

Above median population 65+ 23101 0.254
(0.435)

132433 0.582
(0.493)

-0.328

Above median work from home 23101 0.564
(0.496)

132433 0.410
(0.492)

0.154

COVID cases per 10k 23101 5.759
(30.020)

132433 6.829
(37.699)

-1.070

COVID deaths per 10k 23101 0.087
(0.435)

132433 0.131
(0.784)

-0.044

Notes: The value displayed for t-tests are the differences in the means across the groups.

Table A12: European National Orders and Pollution (PM2.5) By Country

(1) (2) (3) (4) (5)
FR GE IT SP UK

During lockdown -14.649 -44.275 -4.128 -15.736 -21.861
(0.592) (0.221) (0.572) (0.367) (0.379)

Constant 22.406 48.193 15.604 17.531 27.071
(0.416) (0.094) (0.279) (0.263) (0.159)

Date FE Y Y Y Y Y
Temperature Y Y Y Y Y
Precipitation Y Y Y Y Y
Observations 23880 66276 28432 9010 25188

Notes: National orders significantly reduce PM2.5 in France, Germany, Italy, Spain and the
United Kingdom. The dependent variable is average daily PM2.5 concentration, measured at
the population centroid for an administrative area from the three nearest air quality monitors.
The mean concentration during the period is 8.7, and the within-unit standard deviation is
6.0. An observation is an area-day. A total of 841 areas are used with 96 from France (de-
partments), 403 from Germany (kreise), 113 from Italy (provinces), 55 from Spain (provinces)
and 192 from the United Kingdom (counties). Observations are from the first to the 300th day
of 2020, which includes both before, during, and after lockdowns. Standard errors reported in
parentheses. All columns include area and date fixed effects.
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Table A13: State Orders and Collisions: State-Level

(1) (2) (3) (4) (5)
During safer-at-home-order 0.840 0.839 0.834 0.823 0.797

(0.109) (0.114) (0.110) (0.095) (0.092)
COVID cases per 10k 1.003 1.010 1.009 1.008

(0.001) (0.004) (0.003) (0.003)
COVID deaths per 10k 0.908 0.919 0.930

(0.034) (0.029) (0.029)
State FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 5716 5716 5716 5716 5716
Counties 41 41 41 41 41

Notes: State orders significantly reduce traffic collisions. Poisson model with fixed effects. The depen-
dent variable is count of traffic collisions at the state-level. Coefficients are incidence rate-ratios, wherein
a value below one indicates a decrease in the dependent variable and a value above indicates an increase.
The time period is January 1st, 2020 through the moment the statewide safer-at-home ended. COVID-19
known cases and deaths per 10,000 people. Robust standard errors reported in parentheses. All columns
include state and date fixed effects.

Table A14: State Orders and Collisions: Proactive and Reactive Counties

All Proactive Reactive
(1) (2) (3) (4) (5) (6)

During order 0.806 0.793 0.752 0.750 0.865 0.850
(0.049) (0.045) (0.086) (0.067) (0.053) (0.054)

During county order 0.762 0.756
(0.057) (0.048)

COVID cases per 10k 1.002 1.007 1.002
(0.001) (0.005) (0.001)

COVID deaths per 10k 0.983 0.809 0.979
(0.011) (0.098) (0.010)

County FE Y Y Y Y Y Y
Date FE Y Y Y Y Y Y
COVID-19 policies Y Y Y
Weather controls Y Y Y Y Y Y
Observations 237408 237408 16479 16479 220929 220929
Counties 1710 1710 121 121 1589 1589

Notes: The dependent variable is average daily collisions at the county-level. Proactive counties implemented their
own orders. Reactive counties had only state orders issued. The time period is January 1st, 2020 through the mo-
ment the statewide safer-at-home ended. COVID-19 known cases and deaths per 10,000 people. Robust standard
errors reported in parentheses. All columns include county and date fixed effects.
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Table A16: State Orders and Pollution (PM2.5): Simulation Using Synthetic Control

(1) (2) (3) (4) (5)
synth diff synth diff synth diff synth diff synth diff

During order -1.060 -1.057 -1.059 -1.072 -0.884
(0.397) (0.397) (0.397) (0.419) (0.339)

COVID cases per 10k 0.002 0.002 0.002 0.002
(0.001) (0.001) (0.001) (0.001)

COVID deaths per 10k -0.009 -0.002 0.003
(0.030) (0.027) (0.031)

Constant 1.045 1.044 1.044 1.044 0.757
(0.866) (0.866) (0.866) (0.869) (0.851)

County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 237243 237243 237243 237243 237243
Counties 1418 1418 1418 1418 1418

Notes: State orders significantly reduce PM2.5. The dependent variable is the difference between observed and coun-
terfactual PM2.5 at the county-day level. For each county that issued a lockdown order, a synthetic counterfactual
county was created from a weighted convex combination of counties from the 8 ‘donor’ states that did not issue an
order. Synthetic weights determined by pre-treatment period PM2.5 levels. The time period is January 1st, 2020
through June 30th, 2020. COVID-19 known cases and deaths per 10,000 people using 2019 population estimates.
Standard errors reported in parentheses, clustered at the state-level. All columns include state and date fixed effects.
Sample restricted to counties within 50km of an air pollution monitoring station.
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Table A17: State Orders and Pollution (PM2.5): Simulation Using Synthetic Control
Placebo

(1) (2) (3) (4) (5)
During order (placebo) -0.705 -0.694 -0.694 -0.720 1.084

(0.962) (0.966) (0.965) (0.978) (2.237)
COVID cases per 10k -0.002 -0.003 -0.003 -0.003

(0.002) (0.002) (0.002) (0.002)
COVID deaths per 10k 0.052 0.055 0.066

(0.066) (0.065) (0.064)
Constant 0.301 0.301 0.300 0.300 0.369

(0.942) (0.945) (0.944) (0.934) (0.940)
County FE Y Y Y Y Y
Date FE Y Y Y Y Y
COVID-19 policies Y Y
Weather controls Y
Observations 30989 30989 30989 30989 30989
Counties 209 209 209 209 209

Notes: Placebo state orders do not significantly affect PM2.5. The dependent variable is the differ-
ence between observed and counterfactual PM2.5 at the county-day level. For each county in each of
the 8 states that did not issue a lockdown order, a synthetic counterfactual county was created from a
weighted convex combination of remaining counties in the 8 ‘donor’ states that did not issue an order.
Synthetic weights determined by pre-treatment period PM2.5 levels. The time period is January 1st,
2020 through June 30th, 2020. COVID-19 known cases and deaths per 10,000 people using 2019 pop-
ulation estimates. Standard errors reported in parentheses, clustered at the state-level. All columns
include state and date fixed effects. Sample restricted to counties within 50km of an air pollution
monitoring station.
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